Semantic Segmentation with Second-Order Pooling
نویسندگان
چکیده
Feature extraction, coding and pooling, are important components on many contemporary object recognition paradigms. In this paper we explore novel pooling techniques that encode the second-order statistics of local descriptors inside a region. To achieve this effect, we introduce multiplicative second-order analogues of average and maxpooling that together with appropriate non-linearities lead to state-ofthe-art performance on free-form region recognition, without any type of feature coding. Instead of coding, we found that enriching local descriptors with additional image information leads to large performance gains, especially in conjunction with the proposed pooling methodology. We show that second-order pooling over free-form regions produces results superior to those of the winning systems in the Pascal VOC 2011 semantic segmentation challenge, with models that are 20,000 times faster.
منابع مشابه
Weakly Supervised Semantic Segmentation Using Superpixel Pooling Network
We propose a weakly supervised semantic segmentation algorithm based on deep neural networks, which relies on imagelevel class labels only. The proposed algorithm alternates between generating segmentation annotations and learning a semantic segmentation network using the generated annotations. A key determinant of success in this framework is the capability to construct reliable initial annota...
متن کاملFace Identification with Second-Order Pooling
Automatic face recognition has received significant performance improvement by developing specialised facial image representations. On the other hand, generic object recognition has rarely been applied to the face recognition. Spatial pyramid pooling of features encoded by an over-complete dictionary has been the key component of many state-of-the-art image classification systems. Inspired by i...
متن کاملSTD2P: RGBD Semantic Segmentation Using Spatio-Temporal Data-Driven Pooling Supplementary Material
In the supplementary material, we present the analysis of semantic boundary accurary in Section 1. In section 2, we evaluate the oracle performance on NYUDv2 40-class task with our spatio-temporal data-driven pooling. In section 3, we analyze the groundtruth annotations of the NYUDv2 40class task. In section 4, we provide the qualitative results of the semantic segmentation results of the NYUDv...
متن کاملEncoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradual...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012